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Second-order effects in free convection 

By I. C .  WALTON 
Department of Mathematics, University College, London 

(Received 21 June 1973) 

The equations of conservation of momentum, energy and mass together with the 
equations of state are examined for free convection from a vertical paraboloid. 
A transformation due to Saville & Churchill is applied to the first- and second- 
order boundary-layer equations, which are then solved using series about the 
stagnation point, using asymptotic series far up the body and in between by a 
method due to Merk. The second-order outer inviscid flow is given in terms of 
infinite integrals as a solution of Laplace's equation in paraboloidal co-ordinates. 

Eight second-order effects are distinguished, depending on longitudinal and 
transverse curvatures, the displacement flow, heat flux into the boundary layer 
and the variation of density, viscosity, thermometric conductivity and the co- 
efficient of expansion with temperature. Expressions for the skin friction, 
heat-transfer coegcient and various flux thicknesses are obtained and a compari- 
son of the second-order effects is made. 

1. Introduction 
Much attention in recent years has been focused on problems involving laminar 

free convection from a variety of body shapes. The usual starting point has been 
to make boundary-layer approximations under the assumption that the Grashof 
number G is large. The solution is derived using the first terms in asymptotic 
expansions of the momentum, energy and continuity equations as the Grashof 
number tends to infinity and for moderate Grashof numbers a second approxima- 
tion is desirable. 

For incompressible flows in the absence of body forces the second-order 
boundary-layer equations together with the appropriate matching and boundary 
conditions have been formulated by Van Dyke (1962a) using the method of 
matched asymptotic expansions. He notes that these equations are linear (as, 
indeed, are all higher order equations) and divides the second-order correction 
into five additive effects each capable of simply physical interpretation. These he 
labels as (i) longitudinal curvature, (ii) transverse curvature, (iii) displacement 
flow, (iv) external vorticity and (v) external gradient of stagnation temperature. 
In  free convection (iv) and (v) are absent and we must include (iv) the heat 
flux and (v)-(viii) the variation of certain fluid properties with temperature. 
The latter may be taken to depend on x, which is defined as P(T, - To), where ,I3 
is the coefficient of thermal expansion and T, and To the temperatures of the body 
and the ambient fluid respectively. In  some free convection flows x is comparable 
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with the second-order boundary-layer effects (O(G-t))  as illustrated in table I .  
We assume that both curvatures are O( I) everywhere and that non-continuum 
properties may be neglected. 

A survey of second-order boundary layers in forced convection flows is given 
by Van Dyke (1969). Here the neglect of the body force simplifies the analysis 
by separating the momentum and energy equations and the inclusion of this 
term at  the expense of the pressure gradient due to a free stream is the dis- 
tinguishing feature of free convective flows. I n  the only work so far devoted to 
thermally induced second-order boundary layers, Yang & Jerger (1964) and 
Clarke (1973) discuss free convection from a vertical flat plate where the only 
second-order effect present is that due to the displacement flow. Variable 
fluid properties are not considered but Poots & Raggett (1967) have discussed 
them in forced convection. The effect of dissipation in free convection (which we 
shall neglect) has been treated by Gebhart (1962). 

In  this study we consider a flow in which all five second-order effects are present 
and choose, as a simple case of a body possessing both longitudinal and transverse 
curvature, a paraboloid of revolution. This is placed with its axis vertical and is 
assumed to extend upwards to infinity. As in all free convection flows there is 
no obvious velocity scale and we define Ug = gPl(T, - To), where 1 is a typical 
length scale (say, the radius of curvature a t  the station point). The Grashof 
number is then Ug l /v2.  

The first- and seconcl-order boundsry-layer equations are formulated in a 
similar way to that of Van Dyke ( 1 9 6 2 ~ )  and are solved in $3 3-and 5 respectively. 
Series solutions are obtained near the stagnation point and far up the body after 
application of a transformation due to Saville & Churchill (1967) which is ana- 
logous to Gortler’s (1957). This has the advantage that the velocity and tempera- 
ture profiles change slowly as we proceed along the body and we are therefore 
able to find the solution where neither series holds by a method due to Merk 
(1959) which is much faster than the usual step-by-step integration procedure. 

The second-order effect due to  the displacement flow involves the second-order 
outer (inviscid) flow. There is, of course, no first-order outer flow. It is here that 
the elliptic nature of the Navier-Stokes equations reasserts itself, having been 
lost in the boundary-layer approximations, which yield parabolic equations. 
In  5 4 we discuss a solution of Laplace’s equation in paraboloidal co-ordinates in 
which the tangential component of the velocity a t  the surface is expressed in 
terms of infinite integrals involving the second-order normal component. 

Finally, in $6,  expressions for the skin friction, heat-transfer coefficients and 
the flux thicknesses are obtained and the results discussed. 

2. Equations of motion 
Our co-ordinate system (s, N ,  w )  is defined with reference to cylindrical polar 

co-ordinates (r,  x ,  (0) with the origin a t  the stagnation point and z measured 
vertically upwards; s is measured along the body and N normal to it. A length 
element is given by 

( ~ 3 1 ) ~  = (1 + ~ N ) ~ ( d s ) ~ + ( d N ) ~ + ( l  +Nsin8)2(dw)2, 



Second-order effects in free convection 795 

where K = - (d2r/ds2) cosec B is the curvature in the s, N plane and 0 is the angle 
between the tangent and horizontal. 

The momentum, energy and continuity equations for a compressible fluid are 

DI a 
Dt axi( ic) p - = -  k- +-+a), 

DplDt +paK/ax, = 0, (2.3) 

in the usual notation. These are supplemented by equations of state for p, p, k 
and I .  For a homogeneous fluid I, p, p and k are functions o f p  and T with 
(aI/aT), = c,. For a gas we assume that c, = constant, I = cpT, p = RpT, 
,u = ,u(T), k = k(T) and g = pc,/k = constant; for a liquid p = p(T) and 
I = I ( T ) ,  which means that cp = I‘(T), p = ,u(T), k = k(T) and u = a(T) .  The 
boundary conditions are 

T=T,, U = O  a t  N = O ;  T-tT,, U - t o  as N + a .  

We write p = p ,  +pd,  p = ps +pd and T = T, + Td, where the subscripts s and 
d denote static and dynamic variables respectively. When the fluid is static 
(Ui = 0) we have dp,/dz = -gp,, and k(T,)dT,/dz = constant. For a homentropic 
gas T , ( z )  = T,(O)-gz/c,. A characteristic velocity is defined by U, = (/3glTl)*, 
where the local coefficient of expansion p = !&l for a gas and p = -p’(T,)p,l 
for a liquid. Also Tl = T, - To is a typical temperature difference and 1 is a typical 
length (say, the radius of curvature a t  the origin). We non-dimensionalize by 
writing - 

x = ZX, U = U,U, T = q(z)+T1T, p = p,(z)-p,xP, 
- 

P = P,@) +xpogZP, cp = COE,’ p = POP, k = k o k  

where x = pTl andp,, co,po and k, are stagnation values. Assuming that the stag- 
nation temperature gradient may be neglected, i.e. pl(dT,/dx), < x, we may take 
T,(z)  = q ( 0 )  = T,andp, = p,(O) = p,,sothattheequationsofstatemaybewritten 
ilS 

P = PO(1 -xis), 
p = T+pl xT2, p = 1 +xp1!,} 

(2.4) 
= 1 + ~ k , T ,  cP = ~ - + X C ~ T ,  

where /31,p1,kl and c1 are known coefficients which are assumed to be O(1). 
This necessitates avoiding temperatures near which /3 is small for then 

p1= O(x-l) B 1 

and we must therefore exclude discussion of effects such as the anomalous expan- 
sion of water. For a gas we take Bl = - 1 and c1 = 0,  and we may ignore terms in 
x for a liquid (see table I), so that hereafter E p  = 1. 

The equation of continuity reduces to 

aq/axi = X D p p t .  
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Z(cm) T, ( "C)  G G-4 

Air (T,  = 10 "C) 2 1 106 0.03 
1 10 106 0.03 
0.5 100 106 0.03 

Water 80 1 106 0.03 
(T,  = 10°C) 40 10 106 0.03 

Mercury (T,  = 10 "C) 1 0.1 106 0.03 

TABLE 1.  Physical parameters 

8 10 104 0.1 

X 
0.004 
0.04 
0.4 
0.0006 
0.006 
0.006 

0.0002 

6 

3.0 10-5 
1.5 10-5 
0.7 10--5 

1.2 10-5 
0.6 10-5 
1.0 x 10-6 

6.0 x 

The temperature rise due to the dissipation term CD is O( U:lc,), which is O(eT,), 
where G = pgl/c,, and in the energy equation DplDt = O ( E / X ) .  We hereafter 
assume that e < x2 (see table I) and neglect dissipation effects. The simplified 
equations of motion are 

g(1-xT)-  DT 
Dt 

aqlax,L = xDT/Dt ,  (2.7) 

on dropping the bars, where T = I ,  g is a unit vector in the z direction and 

G = p13gT,p:/,ui (Grashof number), 

v = co po/ko 

The boundary conditioiis in non-dimensional form are 

(Prandtl number). 

T = l ,  U = O  a t  N = O ;  T-tO, U+O as N+w.  (2.8) 

2.1. Inner and outer expansions 

For G + 1 we seek an outer solution of the form 

U = U,+G-$U,+ ..., 

and similarly for T and p .  Equations (2.5)-(2.7) and boundary conditions (2.8) 
then give 

(2.9) i U, = 0, T, = 0,  

(U1. V) U,+ V P ,  = - TI#, 

(U,.V)T, = 0,  v.u, = 0, 

which means that TI = 0 and U, derives from a velocity potential which satisfies 
Laplace's equation. 

The boundary conditions at the body cannot be satisfied completely and we 
look for boundary-layer solutions with velocity components (u, v, 0) by writing 
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N = G-4% and V = G - h .  Equations (2.5)-(2.7) then becomes (Rosenhead 1963, 
p. 130) 

{ U  au+ v au uv ahl) I ap Ga a 
has h,an h,h, an. hlas h, h, an 

(1-XT) -- -- +-- +-- = T(l+,8,XT)sinB--- (Ph3 Q) 9 

(2.10a) 

a(h,u)/as+a(h,h,v)/an = 0,  ( 2 . 1 0 4  

where h, = 1 +G-b-Kn, h, = 1, h, = r+G-*nsinB 

and c, = - G-a(au/an + G-iKu/h, - G-4 av/as). 

Again we expand in inverse powers of G, so that 

u = u , + G - ~ u , +  ..., 
and similarly for T and p .  Then we have 

u -+v au, A+- au ap, = Tosm8+- . azu, 
O as O an as an2 ' (2.11a) 

apo/an = 0, (2 .11b) 

aT, aT, 1 a2To u - + v  -= - -  
O as O an u an,' 

( 2 .  I 1 c) 

a(ru,)/as + a(rv,)/an = 0, (2 .114  

where u, = wo = To at n = 0 and as n --f 00 we match with the outer flow to obtain 
u,, To -+ 0. These are the familiar boundary-layer equations, in which we have 
made the Boussinesq approximation x < 1. Equating terms in G-5 in (2.10) and 
writing x = G-42 we obtain the second-order boundary-layer equations 

au, a%, au, au azu ap, 
as au O as O an au2 as 

ul-+vl-+u -+v - ' -T ,s inB-~+-  

au, au sin 8 au, 
an = K n U ,  - - K d+ K U,W, + 

as an 

apllan = KU; - To cos 8, (2.12 b )  

a a - (:rul + n sin Bu, - py,T,) + - (vv, + vo ( m c  + n sin 8 - ZvT,)) = 0. 
as an (2.12 d )  
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The boundary conditions are u1 = v1 = TI = 0 at n = 0 and matching with the 
second-order outer flow gives Tl --f 0 and u1 + Ul(s, 0) as n + m. The boundary 
conditions for the second-order outer flow as N --f 0 obtained by matching with 
the first-order boundary layer as n -+ co are 

q ( s ,  0) = limvo(s, n),  Tl(s, 0) = lim Tl(s, n) = 0. 
n-tm n+ w 

3. The first-order boundary layer 
Equation (2.11 b )  means that the pressure is constant across the boundary layer 

and takes its value at the outer edge. Hence apo/as = 0. Equation ( 2 . 1 1 4  is 
satisfied directly by the introduction of a stream function $o, defined bj- 

We then have 

( 3 . 1 ~ )  

( 3 . l b )  

( 3 . 1 ~ )  

( 3 . l d )  

1 dr 

$onTo.v- @osTon = ( r l r )  Town, 

$on ( $ O m -  r % $on) - $Os $0nn = r2 ~ o s i l l 8  +r$onnn, 

$os(s, 0) = $07&, 0) = 0, Tab, 0) = 1, 
lim $On(s, n) = lim To(s, n)  = 0, 
n+cc n+m 

where subscripts s and n denote differentiation. 
Solutions are best obtained by dividing the range of integration in the s 

direction into three parts. Near the stagnation point and To are expanded in 
power series in s with coefficients functions of n which satisfy certain ordinary 
differential equations. For s 9 1 asymptotic series are obtained in inverse powers 
of s, while in the middle region (3.1) usually must be integrated numerically. 
For isothermal streaming flows Gortler (1957) found that a transformation of the 
variables gave improved series solutions and Saville & Churchill (1967) have 
provided a similar transformation for flows with a body force. It is this that we 
use here. 

We first use Mangler’s transformation to reduce (3.  I )  to a form similar to that 
for planar flows. We write 

Then (3.1) become on dropping the bars 

$on $0ns - $os $on% = (sin 0) l r  

Ton, + d$osTon - $on ‘0s) = 0. 

Using the Saville-Churchill transformation 
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equations (3.2) become 

(3.3) $6 (Fo?, Tog - Pot To?,) - Fo To?, = +To,?,, 
where F, = Fo?, .= 0 and To = 1 a t  7 = 0 and Fo7, To + 0 as 7 -f co. K(6) corresponds 
to Gortler's 'principal function ' and is defined by 

The shape of the body enters these equations only through the coefficient 
K(5)  and for particular body shapes for which K(<) is constant we may obtain 
similarity solutions. Here K(5) is not constant and we seek solutions for 5 < 1 
by expanding in powers of 6. Thus 

mi) = -i Kj(5/K,)"j, 
j=O 

where for round-nosed bodies KO = 8 and CI = 2, and in particular for a paraboloid 
K - - -3 2 8 ,  K - 1 4 1  - m. We expand Fo and To in powers of $2, i.e. 

Fo = Foo + ~ 1 4 1 ( t / K o ) i  + (K2 F02 + K?FOll) (5/KOP + * * - 9  

To = Too + K ,  TO1(5/~0)~ + (K2 To, + K?TOll) (5/K# + * - 1 9  

then equating coefficients of pi in (3.3) gives 

Fl(b +Po, Fi0 - +FA; + Too = 0, 

T:o + gFooTL = 0, 

where 

and a sequence of linear equations for the higher order c0efficients.t 

&(O) = Fho(0) = F k o ( ~ )  = T,,(co) = 0, Too(0) = 1, 

For 5 % 1 we find that for a paraboloid 

K(6) - & + lqp+ E&-9 + O ( @ ) ,  

(3.4) 

where El = 0.052998 and E2 = - (A)%&. This suggests that we look for asymp- 
totic solutions of (3.3) of the form 

Fo(<,7) = ~ o o + ~ 1 P o l < ~ 1 + ~ 2 P o , ~ ~ ~ + I ; ~ A ~ P o ~ i ~ ~ h ~ + 0 ( ~ ~ ~ ) ~  
and similarly for To, where the hi are the possible eigenvalues of (3.3) and the phi 
are scaling factors chosen so that PAAi(0) = 1. Equating coefficients of powers of 
5 we obtain 

(3.5) I j7;,+po0+j7 p" -2 j7 '12  - 
00 00 5 00 - 07 

Fo0(O) = Fh0(0) = PAO(oO) = ~ o o ( o o )  = 0, To0(O) = 1, 

PA + crFooT;o = 0, 

where 

and a sequence of linear equations for the further unknown coefficients. PA, is 
found by comparing the velocity and temperature profiles with those obtained 

t These and subsequent sets of linear equations for higher order coefficients are given in 
longerversions of $8 3 and 5 available on request from the J.F.M. Editorial Office, Department 
of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW. 
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in the following section for some value of 5 where both solutions are valid. For 
0- = 1 we obtain PA, = - 0.052 k 0.001 by comparing profiles a t  5 = 10 and 
numerical integration of the linear equations for poA, gives A, = 0.962914 for 
5 = 1. 

3.1. Solution in the region where neither series holds 
I n  order to calculate the outer flow we need solutions of the boundary-layer 
equations a t  all points along the body. Van Dyke (1964), treating the flow past a 
parabolic cylinder, achieved this by manipulation of series in s, while Clark & 
Watson (1971) were able to  use similarity solutions. Neither approach seems 
likely to succeed here and we must turn our attention to numerical methods. 
Terrill (1960), Merkin (1969) and Switzer (1969) have developed step-by-step 
finite-difference integration procedures to continue the series solution for 5 < 1 
into the region of validity of the series for 6 $ 1. Large but sparse matrices must 
be inverted and, because the equations are nonlinear, iteration is necessary a t  
each step; the step length along the body is very small a t  first but is systematically 
increased later. 

A much faster method due to Merk (1959) is applicable whenever (K’(5) 
is small, as it is here. This is equivalent to assuming that K(5) is almost constant, 
i.e. the departure from similarity solutions is small. I n  fact, the first term in the 
expansion (3.7) below is a local similarity solution and the subsequent terms 
are corrections to it. We first change independent variables from (c, 7)  to ( K ,  7) 
a,nd (3.3) becomes 

] (3.6) 
F o , , , + ~ o , + ~ o ~ o F b , , - ~ ~ ~ t ~ ~ ~ ,  = +tK’(5) ( ~ o , ~ o K ~ - ~ o K ~ o , , ) ~  

To,, + a30 To,, = x +5K’(5) (lib, TOR - Fog To,) 3 

where Fo(0) = Fo,(0) = F,,(oo) = T,(OO) = 0, To(0) = 1. 

Fo may then be expanded as 

Po = F O O W ,  7)  + %5K’(t) Fo,(K, 7) + @I2 [K”(6) FO,,(K, 7) + K’2(6) F022(K, 711 + * * - 9  

(3.7) 
and similarly for To. Substituting into (3.6) we get 

(3.8) 1 Fto + FooF& + Too - 4KFh; = 0,  

T;I, + uF,,TA, = 0,  

where Foo(0) = Fho(0) = P~,(OO) = T,,(co) = 0, Too(0) = 1.  

The linear equations for the higher order coeEcients are similar to Merk’s but 
differ because of his omission of certain terms in his equatioiis (25) and (26). 

It is now a straightforward matter to obtain the solution for any 6 by solving 
a system of ordinary differential equations in which K is a known parameter. 
In  fact initial guesses for the ‘shooting’ method used here are furnished by the 
solution a t  the previous value o f t  and convergence is rapid. Comparison with 
results obtained by step-by-step integration show that Merk’s method is suffi- 
ciently accurate for our present purposes for 0.1 < 5 6 10-0. Outside this range 
the series solutions are to be used. 
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4. The outer flow 

801 

The outer flow is irrotational and the velocity potential q5 satisfies La- 
place's equation. We transform to paraboloidal co-ordinates (x, y )  defined by 
z = &(x2 - y 2 ) ,  r = xy ,  so that y = I is the surface of the paraboloid x = &(r2 - 1) 
and on y = I ,  x = r .  q5 satisfies V2q5 = 0 in y > 1 and the component of velocity 
in the y direction, K(x, y ) ,  satisfies the condition a t  the surface 

lim K ( x ,  y )  = lirn (1  + x 2 ) t  a$/ay = lim wo([, 7) = uo( [ ) .  (4.1) 
W+l+ Y-+l+ 7+m 

V2r+6 = 0 takes the form 

and a solution bounded as x -+ 0 and tending to zero as y --f 00 is 

where A and k are constants. We therefore seek to  represent the solution by the 
general form 
v 

q5 = S r n f ( k ) J O ( k 4  0 

f(k)Kl(k) = -Iom x1(1 +x21)Wx1, 1)J,(kx,)dx, 

Ko(kY) dk ,  

K(x1 ,y )  = (1+x2)-* f ( k ) k K , ( k y ) J , ( k x ) d k .  
!Om 

so that 

By Hankel's inversion formula with y = 1 we get 

= -som xl(l + X ~ ~ ) ~ W ~ ( X ~ ) J ~ ( ~ X ~ ) ~ X ~  by (4.1). 

The tangential component of velocity at  the surface is given by 

( 1  + x2)9 Ul(x) = lim - kf(k) J l ( k x )  K o ( k y )  dk  
Y - t l  + 

(4.2) 

= IoW xl( 1 + x?)* wo(xl) [ 
(4.3) 

The limit process is necessary because K o ( k y ) / K l ( k )  N exp { - ( y  - 1)  k)as k -+ co 
and so the inner integral in (4 .3 )  does not converge for y = 1.  Lim K , ( k y ) / K , ( k )  
is equivalent to lim e-k8 and we may write y+l+ 

8+0+ 

lim f k m) J, (kxl )  J l ( k x )  dk  = J, (kxl )  J l (kx )  dk  
Y'1+ 0 K l ( 4  

+ lim f m  e -k8kJ , (kz , )J l (kx )dk  =f(x,xl)+g(x,xl), say. (4 .4 )  
8+Of 0 

F L M  62 51 
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Also 

(Watson 1962, equation (13.22)), where m2 = 4 x ~ , [ 6 ~  +- (x + x , ) ~ ] - ~  and K(m) 
is the elliptic integral of the first kind, so that 

g(x, 31) = - a {ZK(?n)/n(x +xl)}/ax, (4.5) 

where m2 = 4xx,(2 +x1)-2. As x + x,, m --f 1 and K(m) N -log Ix - xl/. Hence 

g(x,”c,) N [7rx1(x--xl)]-l as x --f xl. 

From (4.3)-(4.5) we obtain 

(4.6) 

where the second integral on the right takes the value (nx)-l d[x( 1 + x2)* v,(x)]/dx 
at x1 = x and a further converging factor c E X l  has been introduced into the last 
integral. By inverting the order of integration this term may be shown to be 
equal to (I  +x2)+vo(x). 

The expression contained in (4.4) forf(x, x,) converges slowly and from a com- 
putational point of view a better expression is obtained by distorting the path 
of integration from the real to the imaginary axis. Thus, for x > x, we may write 

1 Bp (ixt) JO(iXl t) dt I = & ( i t )  [m - 
+yp) rc,( - i t )  1 ~- I 

= -.so [-L - J p )  + Y p )  ] K,(xt) I,(x, t )  dt. 

1 

( - ixt) J,( - ix, t )  ( - i )  dt 

4 * nt 

Similarly, for x < x1 we obtain 

and hencef(x, x + ) -f(x + , x) = 2x. These integrands behave like 

t-Zexp( - fx-x,ft) as t -+ 00 

and can easily be evaluated numerically. Asymptotic expansions of the inte- 
grands in (4.6) as x1 + 00 depend on x/xl and have been obtained sufficiently 
accurately for the upper limits to be replaced by max (10,3x) and max (10,7x) 
respectively to give results correct t o  four places of decimals. Sample results for 
U,(x) as well as V,(x, 1) are shown in table 2 for c = 1.  
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E 
0.0 1 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 
20.0 
50.0 

100.0 

x ( = r )  

0.2557 
0.5954 
0.7626 
1.0495 
1.3275 
1.8697 
2.2437 
2.7925 
3.4648 
4.5925 
5.6730 

Vl 
- 1-4197 
- 1.3518 
- 1.3086 
- 1.2302 
- 1.1571 
- 1.0762 
- 0.9646 
- 0.8814 
- 0.8018 
- 0.7044 
- 0'6372 

TABLE 2. The outer solution 

Ul 
0.1111 
0.2203 
0.2561 
0.2728 
0.2692 
0.2600 
0.2215 
0.1834 
0.1497 
0.1191 
0.0928 

An asymptotic solution for $ as IU --f 00 may be found by taking spherical 
polar co-ordinates (R, 8, w )  with the origin at  the stagnation point and writing 
V' = a$/aR and V ,  = R-l a$/aI9. We then have 1'1 N - V, and U, N V, + R-I V ,  as 
R + co. Let y5 = ZA= P,,(p) R",, where vn < vlz+l andp = cosI9, then 

V ,  N -A,P~l(,u)sin19Rv1-1 as R+m, p + - 1 .  

Nowasp+ -1, 

P,(p) N r-lsin vn(1og ( I  +p) + y + 2 ~ ( v +  1) +ncot vn-log 2) 

and for a paraboloid we have 

z N &r2, R N 4r2(i+2/r2+ ...), cos8 N - (  i -2 /r2+ ...) 

and sin I9 N 21' as r -+ co. Thus V ,  N -A,  n-1 sin ( v ln )  r( gr2)vi-1 as r + co and from 
$ 3  we know that vo N - ( ~ ) * ~ o o ( c o )  r-: as r --f 00. It follows that vl = Q, 

A, = - n2-4 cosec (v ln)  (31% Poo(co) 
and that 

U, N 8,~,P, , (p)R~i-~-B,n-~sin(v ,n)  ( + ~ ~ ) ~ l - l  

= Aln-lsin(vln) ( ~ ~ ~ ) " ~ - ~ { Y ~ ( ~ + Z $ ( Y ~ +  1) +ncot(v,n)-2logr)- I> 

= (g)i Boo(co) { 1 + $(log r2 - y - a$(%) - n} r-+. (4.7) 

This yields U = 0.136 (compared wit'h the computed value 0.107) for r = 5 
and U = 0.061 (compared with 0.055) for r = 10. 

5. The second-order boundary layer 
The pressure gradient in (2.12 a )  is obtained from (2.12 b)  as 

We define the second-order stream function $, t o  satisfy ( 2 . 1 2 ~ 7  identically, i.e. 

(5.2) 

51-2 

$ln = rul + n sin I9 uo - Xruo To, 

klS = - re1 - vO(rrx + rt sin I9 - XrT,). 
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Using (2.11), (5 .2 )  and the definition of $,, ( 2 . 1 2 ~ 2 , ~ )  become 

These equations are linear in ($1, Tl) and may be subdivided into a number of 
simpler problems. Of the terms on the right sides of (5.3) and (5.4) those in K 

represent the effect of longitudinal curvature (I) and those in (sinB)/r arise from 
transverse curvature effects ( t ) .  Buoyancy effects are present in both terms and 
also couple the equations through the term rsinOT, on the left side of (5.3). 
The second term in (5.1) is due to a heat flux (h )  arising from the component of 
the body force along the surface and terms in X are due to the variation in the 
physical properties of the fluid with temperature. We distinguish those due to 
variation of density (dv) (a correction to the Boussinesq approximation), vis- 
cosity (vv), thermometric conductivity (tv) and the coefficient of expansion (cv). 
The boundary conditions are $1 = $ln = Tl = 0 a t  n = 0 and the matching con- 
ditions give u1 -+ U, and TI -+ 0 as n -+a. This means that we may distinguish the 
contribution of the displacement flow ( d )  as a specified tangential velocity at  
infinity. We thus define 

$1 = ~~“+ $ ~ ~ ’ + $ ~ “ ’ + X ( $ l ’ d ” ’ + ~ l ~ l “~)+kl$~t~)+fl~$~))+$~d), (5.5) 

and similarly for Tl. 
We now define the operators 0 and CI, by 

Then 

a sin 0 @($it)’, Tit)) = - r ( u oas - + w o:n) -  nu^) + s i n 8 { ~ - n s i n 0 T 0  
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(5.7 d ,  e )  

(5.7f  1 

After application of the Saville-Churchill transformation equations (5.6) and 
(5.71 become 

and the boundary conditions for all components are Fl = F i  = Tl = 0 at 7 = 0 
and F i  -+ 0 and Tl --f 0 as 7 --f co except for Fid),  which satisfies Fid)’ + D(6 
as ~ - + c o , .  The shape of the body enters these equations only through the 
‘ secondary ’ functions 
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where 2 = [(sinO)/r]f, which are of fundamental importance in determining the 
nature of the secondary Aow. The introduction of L,(f)  as well as L1(Q and so on 
is a reflexioii of the incompleteness of our subdivision (5.5) of (5.3) and (5.4), but 
any further subdivision would be unnecessarily cumbersome. For a paraboloid 
these functions are 

Expanding for 6 < 1 we get 

and the first terms in the expansions of Fl and Tl about f = 0 are obtained by 
substituting these values into (5.9).  For f $ 1 we find that 

Ll ( f )  - (E)  ($f)-%, *(6) ($<)-a, 

H,(f) - %($W, HZ(f) -*(+t)-$, 
T!(<) N - (-2)i (J#f)-&, T,(f) N - *(g)4 (y ! f ) -5%,  

D ( f )  - Fo0(c0) ($[)-a { 1 + &) log (yf) - l( 4 Y + 2ll.(P) +.)I, 
the latter being obtained by use of (4.7).  This suggests that  we expand Fl in 
inverse powers of (as 

Pf) = ( f )  (q,)-${Q)+ 3 ...}, 
F (t) = (8)i (1"<)-5$-{FfJ 0 +...I, 
1 3 

Fit&) = i($f)-%{F$,") + . . .}, 
FF) = p("++...,  10 

FId) = ~ O ( o o ) { ( $ f ) - $ l ~ g f ~ ~ ~ ) + a l ( $ f ) - f F I ~ ) +  ...}, 

and similarly for T, where (v) denotes (dv) ,  (vv), (tv) or (cv). 
The derivation of the ordinary differential equations satisfied by these coeffi- 

cients has been omitted for the sake of brevity, but details are given in the longer 
version of $5 mentioned in the footnote to $ 3 which is available from the J.P.M. 
Editorial Office. 
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- 7 4 6 8 10 

s 

FIGURE 1. Second-order skin-friction parametcr au,/an for u = 1. 
The (dv), (vv) and (cv) components have been reduced by a factor of 10. 

As in $3 .1  we adopt Merk’s method in the region where neither series holds, 
the only novel feature being the removal of the secondary functions, hl(() ,  etc., 
as factors before integrating. 

6. Results and conclusions 
The numerical integration of the systems of ordinary differential equations 

obtained in $5 3 and 5 has been performed for (T = 0-5, 1.0 and 2.0 using a ‘shoot- 
ing ’ technique and all the relevant starting values are tabulated in Walton 
(1972). 

The skin friction T and local Nusselt number N are defined by 

7 aU 

P G an 
- = G-$-(s,O) = G-k ...), 

where q is the heat transfer from the wall. In  Saville-Churchill co-ordinates 

~ u ( s ,  o)/an = +rz)-f  ($()~F~‘((, o), 
aT(s, O ) / a n  = r % ( ~  +r2)-* (S(j-4 Y ( ~ , O ) .  

Values of au (s, O)/an  and aT(s, O) /an  are tabulated in Walton (1972) and are 
illustrated in figures 1 and 2 .  

It can be seen that in the region of the stagnation point longitudinal curvature 
tends to decrease the skin friction, transverse curvature to increase it and dis- 
placement effects t o  decrease it. Similar effects for isothermal flow were found by 
Tani (1954), Eshghy & Hornbeck (1967) and Van Dyke (1962b), and Van Dyke 
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FIGURE 2. Second-order heat-transfer parameter a!/?Jan for v = 1. 
The (h)  component has been magnified by a factor of 10. 

(1962a) respectively and the result due to displacement effects is in accord with 
the results of Yang & Jerger (1964) for free convection from a vertical flat plate. 

Other important quantities are the flux thicknesses defined as follows: 

6, = lorn u2dn, 6, = IOm Tdn, 6, = lom uTdn, 

which we may write as 

where 
b’i = 6io+G-~6il+... (i = 1,2 ,3) ,  

These quantities are also tabulated in Walton (1972). 
For gases typical values of pl, pcl and k, are - 1, 0.6 and 0.6 respectively and 

x and G-t are of the same order, so that figures 1 and 2 closely resemble the actual 
ones. For liquids, however, x < G-a and those curves representing the variation 
of physical properties should be ignored. 

This work formed part of the author’s Ph.D. thesis at  the University of Man- 
Chester, and he gratefully acknowledges the help and encouragement of Mr E. J. 
Watson and the financial support of the Science Research Council. 
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